Extensions 1→N→G→Q→1 with N=C23 and Q=C32⋊C4

Direct product G=N×Q with N=C23 and Q=C32⋊C4
dρLabelID
C23×C32⋊C448C2^3xC3^2:C4288,1039

Semidirect products G=N:Q with N=C23 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C23⋊(C32⋊C4) = (C2×C62)⋊C4φ: C32⋊C4/C32C4 ⊆ Aut C23244C2^3:(C3^2:C4)288,434
C232(C32⋊C4) = C2×C62⋊C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2324C2^3:2(C3^2:C4)288,941

Non-split extensions G=N.Q with N=C23 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C23.(C32⋊C4) = (C2×C62).C4φ: C32⋊C4/C32C4 ⊆ Aut C23244C2^3.(C3^2:C4)288,436
C23.2(C32⋊C4) = C623C8φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2348C2^3.2(C3^2:C4)288,435
C23.3(C32⋊C4) = C2×C62.C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2348C2^3.3(C3^2:C4)288,940
C23.4(C32⋊C4) = C22×C322C8central extension (φ=1)96C2^3.4(C3^2:C4)288,939

׿
×
𝔽